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Abstract

Reflection and transmission coefficients due to incident plane SH-waves at a corrugated interface between two iso-
tropic, laterally and vertically heterogeneous visco-elastic solid half spaces are obtained. The density and complex rigid-
ity of each medium are considered to vary along horizontal and vertical directions. Closed form expressions of reflection
and transmission coefficients are derived using Rayleigh�s method of approximation. These coefficients are found to be
the function of corrugation, heterogeneity, angle of incidence, angle between propagation and attenuation vectors and
visco-elasticity of the media. Numerical computations are made for a specific model to study the nature of dependence
of these coefficients. Variations of reflection and transmission coefficients for the first order of approximation of the
corrugation versus angle of incidence, corrugation and angle between propagation and attenuation vectors are com-
puted and depicted graphically. Comparison is made between these coefficients in viscoelastic media and in uniform
elastic media. The problems investigated earlier by Asano [Bull. Earthq. Res. Inst. 38 (1960) 177], Singh et al. [Acta
Geophys. Pol. XXVI (1978) 209], Kaushik and Chopra [Geophys. Res. Bull. 18 (1980) 111] and Gupta [Geophys.
Trans. 33 (1987) 89] have been reduced as particular cases.
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1. Introduction

Mathematical treatment of propagation of seismic waves and their reflection and refraction from
various types of surfaces are widely applied in the problems of seismology and seismic explorations.
Reflection seismology is a tool for investigating the internal structure of the earth as well as for
exploration of valuable materials buried under the earth surface. Many recent studies based on
the body and surface wave analysis have led to the conclusion that there are significant lateral
and vertical variations in the elastic properties of the earth medium. Also, there are several types
of discontinuties present in the earth. These discontinuties within the earth may be irregular in nat-
ure and cannot be considered as perfectly plane interface. It is, therefore, necessary to take into ac-
count the roughness or irregularity of the interface, while studying the problems of reflection and
refraction of seismic waves. These reflected and refracted waves carry a lot of information with them
which are helpful in studying the character of the material present in the earth among several other
important informations. Therefore, the study of reflection and transmission of elastic/seismic waves at
the corrugated interface is of great practical importance in theoretical as well as in observational
seismology.

The problems of wave propagation and their reflection and refraction from plane boundaries have
been studied by several researchers in the past and have appeared in the open literature e.g. see Ewing
et al. (1957), Brekhovskikh (1960), Achenbach (1976), Aki and Richards (1980), Ben-Menahem and
Singh (1981), Sheriff and Geldart (1982), Lay and Wallace (1995) and Udias (1999). Knowledge of
reflection and transmission coefficients of SH-waves in a layered visco-elastic homogeneous and inho-
mogeneous medium is essential for calculations of amplitudes of various seismic signals. The general
theory of visco-elasticity describes the linear behaviour of both elastic and anelastic materials and pro-
vides the basis for describing the attenuation of seismic waves due to anelasticity. Cooper and Reiss
(1966), Cooper (1967), Buchen (1971a,b) and Borcherdt (1973a,b, 1977), Borcherdt and Wenneberg
(1985), Borcherdt et al. (1986), Borcherdt (1989) and Romeo (2003) investigated various problems
of wave propagation in visco-elasticity. Kaushik and Chopra (1980, 1981, 1983, 1984) studied the
problems of reflection and transmission of SH-waves at a plane interface by incorporating different
nature of elastic properties in linear visco-elastic half spaces and discussed their effects on amplitude
ratios of reflected and refracted waves. They have also discussed the existence of critical angle of
the incident wave for some cases. Gogna and Chander (1985) discussed reflection and transmission
of SH-waves at a plane interface between anisotropic inhomogeneous elastic and visco-elastic half-
spaces.

In all the above investigations, reflection and transmission of SH-waves were considered at a plane
interface. Asano (1960, 1961, 1966), Gupta (1987), Tomar et al. (2002), Kumar et al. (2003) and Tomar
and Kaur (2003) attempted problems of reflection and refraction of elastic waves at a corrugated inter-
face between two different elastic solid half spaces using Rayleigh�s method by incorporating the effects
of elastic and anelastic material properties. Abubakar (1962a,b,c) used method of small perturbations
to investigate the problems of reflection and refraction of elastic waves at rough boundaries. In the
present problem, using Rayleigh�s method of approximation, we have attempted a problem of reflec-
tion and transmission of SH-waves at a corrugated interface between two horizontally and vertically
heterogeneous visco-elastic solid half spaces. The approach is based on a linear model of visco-elastic-
ity and on a Fourier expansion of the function which describes the interface�s shape. An exponential
law is considered to account for material inhomogeneity. The continuity conditions for displacement
and traction at the interface are exploited to obtain the zeroth and the first order approximations
to obtain the reflection and transmission coefficients. Results of Kaushik and Chopra (1980, 1984),
Gupta (1987), Singh et al. (1978) and Asano (1960) have been obtained as particular cases of the pres-
ent problem.
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2. Formulation and theory

We consider a corrugated interface separating the two horizontally and vertically inhomogeneous visco-
elastic solid half spaces with different elastic properties. Let x–y plane be horizontal and z-axis be pointing
vertically downwards. The geometry of the problem is shown in Fig. 1. The quantities concerning the lower
half-space H1 and in the upper half-space H2 will be denoted by subscript 1 and 2 respectively. We denote
the complex rigidity, density and shear velocity in media Hm (m = 1, 2) by Mm, qm and bmð¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mm=qm

p
Þ

respectively. Let the equation of the corrugated interface be given by
z ¼ fðxÞ; ð1Þ

where f is a periodic function of x, independent of y and whose mean value is zero. Fourier series repre-
sentation of f is given by
f ¼
X1
n¼1

fne
ink�x þ f�ne

�ink�x
� �

; ð2Þ
where fn and f�n are Fourier expansion coefficients, k* is the wave number, n is the series expansion order
and i ¼

ffiffiffiffiffiffiffi
�1

p
. Introducing the constants c, cn and sn as follows:
f1 ¼ f�1 ¼
c
2
; f�n ¼

cn � isn
2

; n ¼ 2; 3; 4; . . . ; ð3Þ
we obtain
f ¼ c cos k�xþ
X1
n¼2

½cn cos nk�xþ sn sin nk
�x�:
If the interface shape is expressible by only one cosine term, that is, f ¼ c cos k�x, where c is the amplitude of
the corrugation and the wavelength of the corrugation is then given by 2p/k*.
        H2: [M2, 2]
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Fig. 1. Geometry of the problem.
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The time harmonic equations of small motion for SH-wave [i.e. for U / exp(ixt)] in an isotropic and
inhomogeneous visco-elastic media Hm, in the absence of body forces, are given by
o

ox
Mm

oUm

ox

� �
þ o

oz
Mm

oUm

oz

� �
þ qmx

2Um ¼ 0; ð4Þ
where x is the angular frequency and Um is a complex displacement vector given by
Um ¼ ð0;Um2; 0Þ:

Since the media are assumed to be laterally and vertically heterogeneous, we take
fMm; qmgðx; zÞ ¼ fMm0; qm0g expðamxþ bmzÞ; ð5Þ

where qm0, am, bm are real constants and Mm0 are complex constants. Using relation (5) into Eq. (4), the
general solution of resulting equation may be written as
Um ¼
X2

j¼1

Dmj expð�Amj � rÞ expfiðxt � Pmj � rÞg
� �

ŷ ðm ¼ 1; 2Þ; ð6Þ
where r is the position vector, ŷ is the unit base vector and Dmj are complex constants. Amj and Pmj are
the attenuation and propagation vectors respectively defined by (Borcherdt, 1977; Kaushik and Chopra,
1984)
Amj ¼
am
2
� kmI

h i
x̂þ bm

2
þ ð�1Þjþ1dbmI

� �
ẑ; ð7Þ

Pmj ¼ kmRx̂þ ð�1ÞjdbmR ẑ; ð8Þ
where x̂ and ẑ are unit base vectors, km (= kmR + ikmI) is the complex horizontal wave number given by
(Kaushik and Chopra, 1984)
km ¼ jPmjj sin hmj � ijAmjj sinðhmj � cmjÞ; ð9Þ
the suffixes R and I refer to the real and imaginary parts respectively and
d2
bm

¼ k2bm � k2m � a2m
4
� b2m

4
; k2bm ¼ x2=b2

m; bm ¼
ffiffiffiffiffiffiffiffiffi
Mm0

qm0

s
; ð10Þ
hmj are defined in Fig. 1 and cmj are the angles between the propagation and attenuation vectors Pmj and
Amj. Using (7) and (8), we see that the attenuation and propagation vectors satisfy the following two
relations:
jPmjj2 � jAmjj2 ¼ Reðk2bmÞ � amAmjx � bmAmjz; ð11Þ

2jPmjjjAmjj cos cmj ¼ �Imðk2bmÞ þ amPmjx þ bmPmjz; ð12Þ
where Amjx, Amjz, Pmjx and Pmjz are the components of attenuation and propagation vectors in the direc-
tions shown by their suffixes x and z; Re stands for real part and Im stands for imaginary part. On solving
Eqs. (11) and (12), one can obtain
2jPmjj2 ¼ Xm1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

m1 þ X2
m2

q
; ð13Þ

2jAmjj2 ¼ �Xm1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

m1 þ X2
m2

q
; ð14Þ
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where
Xm1 ¼ Reðk2bmÞ � amAmjx � bmAmjz; ð15Þ

Xm2 ¼ ½�Imðk2bmÞ þ amPmjx þ bmPmjz�= cos cmj: ð16Þ

Let a train of general plane SH-wave propagating through the lower half space H1 become incident at the
corrugated interface z = f and making an angle h11 with the z-axis. Due to corrugation of the interface, the
reflection and refraction phenomena will be effected and the incident SH-wave will give rise to the following
waves at the corrugated interface:

In medium H1 (i) a regularly reflected wave making an angle h12 with z-axis, (ii) a spectrum of nth order
of irregularly reflected waves at angles hn12 in the left side of regularly reflected wave and (iii) a similar spec-
trum of irregularly reflected waves at angles h0n12 in the right side of regularly reflected wave.

In medium H2 (i) a regularly refracted wave at an angle h21 with z-axis, (ii) a spectrum of nth order of
irregularly refracted waves at angles hn21 in the left side of regularly refracted wave and (iii) a similar spec-
trum of irregularly refracted waves at angles h0n21 in the right side of regularly refracted wave.

Thus, the total displacement field in medium H1 will be the sum of incident, regularly reflected and irreg-
ularly reflected waves, given as
u12 ¼
X2

j¼1

D1j expf�A1j � rg expfiðxt � P1j � rÞg þ
X1
n¼1

Bn expf�An
12 � rg expfiðxt � Pn

12 � rÞg

þ
X1
n¼1

B0
n expf�A0n

12 � rg expfiðxt � P0n
12 � rÞg: ð17Þ
Similarly, the total displacement field in medium H2 will be given by
u22 ¼ D21 expf�A21 � rg expfiðxt � P21 � rÞg þ
X1
n¼1

Cn expf�An
21 � rg expfiðxt � Pn

21 � rÞg

þ
X1
n¼1

C0
n expf�A0n

21 � rg expfiðxt � P0n
21 � rÞg; ð18Þ
where D11, D12 and D21 are in general frequency dependent complex amplitudes of the incident, reflected
and transmitted waves respectively; Bn and B0

n are the amplitudes of irregularly reflected (scattered) waves;
Cn and C0

n are the amplitudes of irregularly refracted waves and
An
mj ¼

am
2
� knmI

h i
x̂þ bm

2
þ ð�1Þjþ1dn

bmI

� �
ẑ; Pn

mj ¼ knmRx̂þ ð�1Þjdn
bmR

ẑ; ð19Þ

A0n
mj ¼

am
2
� k0nmI

h i
x̂þ bm

2
þ ð�1Þjþ1d 0n

bmI

� �
ẑ; P0n

mj ¼ k0nmRx̂þ ð�1Þjd 0n
bmR

ẑ; ð20Þ
knm and k0nm are the complex horizontal wave numbers for the waves of nth order spectrum in Hm and are
given by
knm ¼ jPn
mjj sin h

n
mj � ijAn

mjj sinðh
n
mj � cnmjÞ ðm 6¼ jÞ; ð21Þ

k0nm ¼ jP0n
mjj sin h

0n
mj � ijA0n

mjj sinðh
0n
mj � c0nmjÞ ðm 6¼ jÞ; ð22Þ
and
ðdn
bm
Þ2 ¼ k2bm � ðknmÞ

2 � 1

4
ða2m þ b2mÞ; ðd 0n

bm
Þ2 ¼ k2bm � ðk0nmÞ

2 � 1

4
ða2m þ b2mÞ: ð23Þ
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3. Boundary conditions

The boundary conditions to be satisfied at the corrugated interface are the continuity of displacement
and traction, that is, at z = f
u12 ¼ u22; ð24Þ

M10

ou12
oz

� ou12
ox

f0
� �

¼ M20

ou22
oz

� ou22
ox

f0
� �

; ð25Þ
where f 0 is the derivative of f with respect to x. Inserting the values of u12 and u22 given by Eqs. (17) and
(18) into the above boundary conditions, we have
D11 exp � a1
2
þ ik1

� 	
x� b1

2
� idb1

� �
f


 �
þ D12 exp � a1

2
þ ik1

� 	
x� b1

2
þ idb1

� �
f


 �

þ
X1
n¼1

Bn exp � a1
2
þ ikn1

� 	
x� b1

2
þ idn

b1

� �
f


 �
þ
X1
n¼1

B0
n exp � a1

2
þ ik0n1

� 	
x� b1

2
þ id 0n

b1

� �
f


 �

¼ D21 exp � a2
2
þ ik2

� 	
x� b2

2
� idb2

� �
f


 �
þ
X1
n¼1

Cn exp � a2
2
þ ikn2

� 	
x� b2

2
� idn

b2

� �
f


 �

þ
X1
n¼1

C0
n exp � a2

2
þ ik0n2

� 	
x� b2

2
� id 0n

b2

� �
f


 �
; ð26Þ
and
M10 � b1
2
þ idb1

� �
D11 exp � a1

2
þ ik1

� 	
x� b1

2
� idb1

� �
f


 �
� b1

2
þ idb1

� �
D12 exp

�

� � a1
2
þ ik1

� 	
x� b1

2
þ idb1

� �
f


 �
�
X1
n¼1

Bn
b1
2
þ idn

b1

� �
exp � a1

2
þ ikn1

� 	
x� b1

2
þ idn

b1

� �
f


 �

�
X1
n¼1

B0
n

b1
2
þ id 0n

b1

� �
exp � a1

2
þ ik0n1

� 	
x� b1

2
þ id 0n

b1

� �
f


 �

þf0
a1
2
þ ik1

� 	
D11 exp � a1

2
þ ik1

� 	
x� b1

2
� idb1

� �
f


 �
þ a1

2
þ ik1

� 	
D12 exp

�

� � a1
2
þ ik1

� 	
x� b1

2
þ idb1

� �
f


 �
þ
X1
n¼1

Bn
a1
2
þ ikn1

� 	
exp � a1

2
þ ikn1

� 	
x� b1

2
þ idn

b1

� �
f


 �

þ
X1
n¼1

B0
n

a1
2
þ ik0n1

� 	
exp � a1

2
þ ik0n1

� 	
x� b1

2
þ id 0n

b1

� �
f


 �##

¼ M20 � b2
2
þ idb2

� �
D21 exp � a2

2
þ ik2

� 	
x� b2

2
� idb2

� �
f


 �
�
X1
n¼1

Cn
b2
2
� idn

b2

� �
exp

"

� � a2
2
þ ikn2

� 	
x� b2

2
� idn

b2

� �
f


 �
�
X1
n¼1

C0
n

b2
2
� id 0n

b2

� �
exp � a2

2
þ ik0n2

� 	
x� b2

2
� id 0n

b2

� �
f


 �

þf0
a2
2
þ ik2

� 	
D21 exp � a2

2
þ ik2

� 	
x� b2

2
� idb2

� �
f


 �
þ
X1
n¼1

Cn
a2
2
þ ikn2

� 	
exp

"

� � a1
2
þ ikn2

� 	
x� b2

2
� idn

b2

� �
f


 �
þ
X1
n¼1

C0
n

a2
2
þ ik0n2

� 	
exp � a2

2
þ ik0n2

� 	
x� b2

2
� id 0n

b2

� �
f


 �##
:

ð27Þ
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Of course, Eqs. (26) and (27) imply the Snell�s law, which is not affected by the inhomogeneity of the med-
ium and, according to Borcherdt (1977) and the representation (9) can be written as
k ¼ jPj sin h� ijAj sinðh� cÞ ¼ k1 ¼ k2; ð28Þ

where jPj and jAj are the values of jP11j and jA11j given by (13) and (14) with a1 = b1 = 0 respectively.

Eq. (28) and the fact that the amplitudes D11, D12, D21, Bn, B0
n, Cn and C0

n are independent of the spatial
coordinates imply a1 = a2 = a (say). In addition, owing to Eq. (2), we obtain the extended form of con-
cerned Spectrum theorem (Asano, 1960) which gives
kni � ki ¼ nk�; k0ni � ki ¼ �nk� ði ¼ 1; 2Þ ð29Þ

Using Eqs. (21), (22) and (28), it can be verified that when visco-elasticity is absent, the Spectrum theorem
given by (29) reduces to that given in Asano (1960). Now using Eqs. (28) and (29) into Eqs. (26) and (27),
we obtain
D11 exp � b1
2
� idb1

� �
f


 �
þ D12 exp � b1

2
þ idb1

� �
f


 �
þ
X1
n¼1

Bn exp � b1
2
f� iðnk�xþ dn

b1
fÞ


 �

þ
X1
n¼1

B0
n exp � b1

2
fþ iðnk�x� d 0n

b1
fÞ


 �

¼ D21 exp � b2
2
� idb2

� �
f


 �
þ
X1
n¼1

Cn exp � b2
2
f� iðnk�x� dn

b2
fÞ


 �

þ
X1
n¼1

C0
n exp � b2

2
fþ iðnk�xþ d 0n

b2
fÞ


 �
; ð30Þ
and
M10 �b1
2
þ idb1

� �
D11 exp � b1

2
� idb1

� �
f


 �
� b1

2
þ idb1

� �
D12 exp � b1

2
þ idb1

� �
f


 ��

�
X1
n¼1

Bn
b1
2
þ idn

b1

� �
exp �ink�x� b1

2
þ idn

b1

� �
f


 �
�
X1
n¼1

B0
n

b1
2
þ id 0n

b1

� �

� exp ink�x� b1
2
þ id 0n

b1

� �
f


 �
þ f0

a1
2
D11 exp � b1

2
� idb1

� �
f


 �
þa1

2
D12

�

� exp � b1
2
þ idb1

� �
f


 �
þ
X1
n¼1

Bnð
a1
2
þ ink�Þexp �ink�x� b1

2
þ idn

b1

� �
f


 �

þ
X1
n¼1

B0
n

a1
2
� ink�

� 	
exp ink�x� b1

2
þ id 0n

b1

� �
f


 �##

¼M20 �b2
2
þ idb2

� �
D21 exp � b2

2
� idb2

� �
f


 �
�
X1
n¼1

Cn
b2
2
� idn

b2

� �
exp �ink�x� b2

2
� idn

b2

� �
f


 �"

�
X1
n¼1

C0
n

b2
2
� id 0n

b2

� �
exp ink�x� b2

2
� id 0n

b2

� �
f


 �
þ f0

a2
2
D21 exp � b2

2
� idb2

� �
f


 ��

þ
X1
n¼1

Cn
a2
2
þ ink�

� 	
exp �ink�x� b2

2
� idn

b2

� �
f


 �
þ
X1
n¼1

C0
n

a2
2
� ink�

� 	
exp ink�x� b2

2
� id 0n

b2

� �
f


 �##
:

ð31Þ



3628 J. Kaur et al. / International Journal of Solids and Structures 42 (2005) 3621–3643
Eqs. (30) and (31) enable us to determine the reflection and transmission coefficients of any order of
approximation of the corrugated interface.
4. Solution of the first order approximation

We assume that the corrugation of the interface z = f(x) is so small that higher powers of f can be ne-
glected, so we have
e�iQf ¼ 1� iQf: ð32Þ

Now, collecting the terms independent of x and f to both side of Eqs. (30) and (31), we obtain
D11 þ D12 ¼ D21; ð33Þ

M10

b1
2
� idb1

� �
D11 þ

b1
2
þ idb1

� �
D12

� �
¼ M20

b2
2
� idb2

� �
D21: ð34Þ
Using the notations R ¼ D12

D11
and T ¼ D21

D11
, the solution of Eqs. (33) and (34) is given by
R ¼

1

2
b2 � b1

M10

M20

� �
þ i

M10

M20

db1 � db2

� �
1

2
�b2 þ b1

M10

M20

� �
þ i

M10

M20

db1 þ db2

� � ; ð35Þ

T ¼
2i M10

M20
db1

1

2
�b2 þ b1

M10

M20

� �
þ i

M10

M20

db1 þ db2

� � : ð36Þ
These are the reflection and refraction coefficients for the plane interface between two laterally and verti-
cally heterogeneous viscoelastic solids already obtained by Kaushik and Chopra (1984) for the relevant
problem. Further, to find the values for the solution of first order approximation for Bn and Cn, we collect
the coefficients of e�ink�x to both sides of Eqs. (30) and (31), obtaining
Rn � T n ¼ ð1þ RÞ b1
2
� ið1� RÞdb1 þ T � b2

2
þ idb2

� �� �
f�n; ð37Þ

b1
2
þ idn

b1

� �
Rn �

M20

M10

b2
2
� idn

b2

� �
T n ¼ � b1

2
þ idb1

� �2

� ink�a
2

ð1þ RÞ
"

þ b1
2
þ idb1

� �2

R�M20

M10

T � b2
2
þ idb2

� �2

� ink�a
2

" ##
f�n; ð38Þ
where Rn ¼ Bn
D11

and T n ¼ Cn
D11

.
Similarly, on equating the coefficients of eink

�x to both sides of Eqs. (30) and (31), we obtain the first order
approximation for B0

n and C0
n as follows:
R0
n � T 0

n ¼ ð1þ RÞ b1
2
� ið1� RÞdb1 þ T � b2

2
þ idb2

� �� �
fn; ð39Þ
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b1
2
þ id 0n

b1

� �
R0
n �

M20

M10

b2
2
� id 0n

b2

� �
T 0

n

¼ � b1
2
þ idb1

� �2

þ ink�a
2

ð1þ RÞ þ b1
2
þ idb1

� �2

R�M20

M10

T ð� b2
2
þ idb2Þ

2 þ ink�a
2

� �" #
fn; ð40Þ
where R0
n ¼

B0
n

D11
and T 0

n ¼
C0
n

D11
.

Eqs. (37)–(40) give the values of Rn, Tn, R
0
n and T 0

n as follows:
Rn ¼
DRn

Dn
; T n ¼

DT n

Dn
; R0

n ¼
DR0

n

D0
n

; T 0
n ¼

DT 0
n

D0
n

; ð41Þ
where
DRn ¼
M20

M10

b2
2
� idn

b2

� �
b1
2
� idb1

� �
þ R

b1
2
þ idb1

� �
þ T � b2
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þ idb2

� �� ��
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" ##
f�n; ð42Þ

DT n ¼ � b1
2
� idb1

� �2

þ ink�a
2

þ R � b1
2
þ idb1

� �2

þ ink�a
2
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M10
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þ idb2
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� �� �
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D0
n ¼ � b1

2
þ b2M20

2M10

� i d 0n
b1
þM20

M10

d 0n
b2

� �� �
: ð47Þ
The values of the coefficients R and T appearing in the above expressions are given by Eqs. (35) and (36).
Here Rn and R0

n are reflection coefficients for the first order approximation of the corrugation; Tn and T 0
n are

refraction coefficients for the first order approximation.
In a special case, if we consider fn = f�n = 0; (n 5 1) and f1 ¼ f�1 ¼ c

2
then the boundary surface is given

by z ¼ c cos k�x, where c is the amplitude of the corrugation. From Eqs. (42)–(47) we obtain the following
formulae of R1; T 1;R0

1 and T 0
1 for the first order approximation of the corrugation as
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R1 ¼
DR1

D1

; T 1 ¼
DT 1

D1

; R0
1 ¼

DR0
1

D0
1

; T 0
1 ¼

DT 0
1

D0
1

; ð48Þ
where DR1
;DT 1

;DR0
1
, DT 0

1
;D1 and D0

1 are given as
DR1
¼ c
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� �
� i d1
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� �
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� i d 01
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� �
:

The values of dbm , d
1
bm

and d 01
bm

can be obtained from Eqs. (10) and (23) by taking n = 1 and a1 = a2 = a. We
notice from the above equations that the coefficients for first order of approximation are proportional to
amplitude of the corrugated interface and are functions of physical properties of the media and of the inci-
dent wave.
5. Particular cases

(a) When only lateral heterogeneity of both the media is removed, we are left with vertically heterogeneous
viscoelastic media. In this case, we shall have a1 = a2 = a = 0. Plugging these values into Eqs. (10) and
(23), we get
d2
bm

¼ k2bm � k2m � b2m
4
; ðdn

bm
Þ2 ¼ k2bm � ðknmÞ

2 � b2m
4
; ðd 0n

bm
Þ2 ¼ k2bm � ðk0nmÞ

2 � b2m
4
:
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With these modified values, the reflection and transmission coefficients due to incident SH-waves at a cor-
rugated interface between two different vertically heterogeneous viscoelastic solids can be obtained from
Eqs. (35), (36) and (41).
(b) When only vertical heterogeneity of both the media is removed, we shall have laterally heterogeneous

viscoelastic media. In this case, we shall have b1 = b2 = 0, so that the expressions in Eqs. (10) and (23)
reduce to
d2
bm

¼ k2bm � k2m � a2m
4
; ðdn

bm
Þ2 ¼ k2bm � ðknmÞ

2 � a2m
4
; ðd 0n

bm
Þ2 ¼ k2bm � ðk0nmÞ

2 � a2m
4
:

With these values, the reflection and transmission coefficients, in this case, can be obtained from Eqs. (35),
(36) and (41).
(c) When only viscosity of the media is removed, we are left with isotropic and heterogeneous elastic

media. Replacing T, Tn and T 0
n by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M10=M20

p
T 0,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M10=M20

p
T n and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M10=M20

p
T 0

n respectively;

d2
b1
¼ k2b1 � k21 � a2

4
� b2

1

4
¼ s2; d2

b2
¼ k2b2 � k22 � a2

4
� b2

2

4
¼ r2. It is easy to see that a2m and b2m reduce to 4a20

and 4b2m in the notations of Gupta (1987). With these values and bm = cm, Eqs. (35)–(40) match with
Eqs. (28), (29) and (32)–(35) of Gupta (1987) for the corresponding problem.

(d) When viscosity, lateral and vertical heterogeneities of the media are removed, then the medium H1 and
H2 becomes uniform elastic. In this case, putting am = bm = 0 into the expressions of Eq. (10), we have

db1 ¼
x cos h11

bh1
and db2 ¼

x cos h21
bh2

, where bh1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M10=q10

p
; bh2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M20=q20

p
. With the help of these reduc-

tions and using appropriate notations, the reflection and transmission coefficients for the plane inter-
face given by Eqs. (35) and (36) and the boundary conditions (42)–(47) yielding reflection and
transmission coefficients for the first order approximation, match with those of Asano (1960) for the
relevant case.

(e) When corrugation, viscosity, lateral and vertical heterogeneities of the media are removed, the problem
reduces to the problem of SH-wave incident at plane interface between two homogeneous elastic half
spaces. All the reflection and transmission coefficients R1, T 1, R0

1 and T 0
1 for the first order approxima-

tion of the corrugation, in this case, vanish as they are proportional to the amplitude of corrugation c.
Therefore, in this case each of c, a, b1 and b2 vanishes. Thus from Eq. (48), we see that the coefficients
R1, T 1, R0

1 and T 0
1 become zero and the expressions of R and T given by (35) and (36) reduce to those

given in Savarensky (1975) for the relevant problem, after replacing M10/M20 by m and bh1=bh2 by n.
(f) When corrugation and viscosity in the media are removed, we are left with the reflection and transmis-

sion of SH-waves at the plane boundary between two laterally and vertically heterogeneous solids. In
this case, f = 0,M10/M20 = m, a1 = a2 = a, b1 = c1, and b2 = c2 and the expressions in Eq. (10) take the

form d2
bm

¼ k2bmcos
2hm � a2m

4
� c2m

4
¼ s2m. With these modifications, it can be seen that the reflection and

transmission coefficients given by Eqs. (35) and (36) at the plane interface are in full agreement with
those given in Singh et al. (1978) for the relevant problem.

(g) When lateral and vertical heterogeneities from both the media and visco-elasticity from the upper med-
ium is removed, the problem reduces to the problem of reflection and transmission of SH-waves at a
corrugated interface between elastic and homogeneous viscoelastic solid half spaces. In this case,
a = b1 = b2 = 0 and k2I ¼ db2I ¼ 0. From Eq. (7) Amj = 0, which means cmj = 0. Thus the expressions

in Eq. (10) reduce to d2
bm

¼ k2bm � k2m. The reduced formulae of reflection and transmission coefficients

from Eqs. (35), (36) and (41) at plane and corrugated interface become
R ¼ M10db1 �M20db2

M10db1 þM20db2

; T ¼ 2M10db1

M10db1 þM20db2

;

R1 ¼
ic

2ðM10d
1
b1
þM20d

1
b2
Þ

M20fð1� RÞd1
b2
db1 þ Tdb2ðdb2 � d1

b2
Þg �M10ð1þ RÞd2

b1

h i
;
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:

(h) When lateral and vertical heterogeneity in the upper medium is removed and only lateral heterogeneity
in the lower medium is removed then we shall be left with the problem of reflection and refraction of
SH waves at a corrugated interface between homogeneous and vertically inhomogeneous viscoelastic
half-spaces. In this case, the corresponding formulae for reflection and transmission coefficients at
the corrugated interface can be obtained easily by putting a = b1 = 0. It is easy to verify that if corru-
gation is removed in addition to the above then the formulae (36) and (37) match with the formulae
(35) and (36) obtained by Kaushik and Chopra (1980) for the relevant problem.
6. Numerical results and discussion

In order to study the effect of inhomogeneities (lateral and vertical), corrugation and the angle between
attenuation and propagation vectors numerically on reflection and transmission coefficients, when a plane
SH-wave become incident obliquely at a corrugated interface between two viscoelastic half spaces H1 and
H2, we have computed the modulus values of these coefficients for a specific model. We take the following
values of relevant elastic parameters as given in Silva (1976) and Krebes and Hron (1980a,b):
M10R=M20R ¼ 2:64; M10I=M10R ¼ 45:0; q1 ¼ 2:2 g=cm3

M20I=M20R ¼ 30:0; b1R=b2R ¼ 1:46; q2 ¼ 3:3 g=cm3
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xc=bh1 ¼ 0:5, c11 = 20�, h11 = 45� and k*c=0.00125, wherever not mentioned. Hereafter, we shall use h and
c instead of h11 and c11 respectively. The non-dimensional quantities b1c and b2c represent the vertical het-
erogeneity factors in H1 and H2 respectively, while ac is lateral heterogeneity factor in both the media. For
the elastic model, we shall take the values of parameters, M10I = M20I=0.



0.06

0.08

0.10

0.12

0.14

ac = 0.0

ac = 0.2

ac = 0.4

ac = 0.6

b1c = b2c = 0.0

Angle of incidence
0 10 20 30 40 50 60 70 80 90

A
m

pl
itu

de
 R

at
io

(T
11

)

Fig. 5. Variation of T 0
1 with h when b1c = 0 = b2c and ac = 0.0, 0.2, 0.4, 0.6.

0.00

0.02

0.04

0.06

0.08
( ac, b1c ,  b2c)

(2)

(1)

(3)

(4)(1)  (0.0,   0.0,   0.0 )
(2)  (0.0,   0.0,  0.10)
(3)  (0.0,  0.10,  0.10)
(4)  (0.0,  0.15,  0.20)

Angle of incidence
0 10 20 30 40 50 60 70 80 90

A
m

pl
itu

de
 R

at
io

(R
1)

Fig. 6. Variations of R1 with h when ac = 0.0,b1c = 0.0, 0.10, 0.15 and b2c = 0.0, 0.10, 0.20.

3634 J. Kaur et al. / International Journal of Solids and Structures 42 (2005) 3621–3643
(i) Effect of the lateral heterogeneity. Figs. 2–5 depict the variations of reflection and transmission
coefficients for the first-order approximation of the corrugated interface with respect to the angle
of incidence, when vertical heterogeneities of the media are absent and lateral heterogeneity factor
vary. The effect of ac on these coefficients is clearly noticed. It is found that the values of coeffi-
cients R1, R0

1 and T 0
1 increases with increase of ac and h whereas the coefficient T1 is found to

decrease with increase of angles of incidence. The magnitude of T 0
1 is found to be greater than those
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of other amplitude ratios for the first order approximation of the corrugation. Also, the rate of
increase or decrease of coefficients with h is found to more significant in the absence of heteroge-
neities.

(ii) Effect of the vertical heterogeneity. Figs. 6–9 show the effect of vertical heterogeneity on R1, T1, R
0
1 and

T 0
1 and lateral heterogeneity factor is absent in both the media. We notice from these figures that the

values of these coefficients vary significantly with increase of b1c and b2c. The values of coefficients R1

and T1 increase with b1c whereas values of coefficients R0
1 and T 0

1 show different behaviour. The values
of coefficient R0

1 decreases very slowly when angle of incidence h lies between 0� and 20� and thereafter
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increases. From Fig. 9, it is found that the values of coefficient T 0
1 decreases with b1c at all angles of

incidence. When only vertical heterogeneity in the medium H2 is increased, the values of coefficients
R1, T1, R

0
1 and T 0

1 increase at all angles of incidence. When vertical heterogeneity in both the media
increases, the values of all the amplitude ratios increase at all angles of incidence. Also, in general
the reflection coefficients increase with increase of h, while transmission coefficients decrease with
increase of h in this case.
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(iii) Effect of visco-elasticity. Figs. 10–13 show the effect of visco-elasticity on various amplitude ratios
when both lateral and vertical heterogeneities are present in both the media with the values
ac = 0.10, b1c = 0.15 and b2c = 0.12. We notice from these figures that the values of coefficients R1

and R0
1 in viscoelastic media are larger than those in case of elastic media. The values of amplitude ratio

T1 for elastic case are less than that of viscoelastic case in the range 0� < h < 82�, while in the rest of the
range it is reverse. The values of T 0

1 for elastic case is found to be greater than that of viscoelastic case
for all angles of incidence except in the neighborhood of angle h = 80�. Again, in viscoelastic media the
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amplitude ratio R1 increases slowly, while all other amplitude ratios decrease with angle of incidence.
On the other hand, in case of elastic media, the behaviour of coefficients R1, R

0
1 and T 0

1 is similar to each
other, while the behaviour of coefficient T1 is that it first increases very slowly and decreases fast in the
neighborhood of h = 80� and thereafter it increases to the maximum value at h = 90�.

(iv) Effect of corrugation. To study the effect of corrugation parameter k*c on the coefficients R1, T1, R
0
1 and

T 0
1, we have computed them for very small values of k*c with the values of parameters ac = 0.10,

b1c = 0.15, b2c = 0.12 and h = 45�. Figs. 14,15 show the variations of the coefficients R1, T1, R
0
1; T

0
1 ver-

sus k*c. Here we notice that the coefficients T1, T
0
1 and R0

1 are strongly affected by the corrugation
parameter k*c, while the values of R1 are least affected with increase of k*c. Also, the values of T1
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decrease linearly with k*c. We observe from these figures that the values of R0
1 increase when

0 < k*c < 0.06 and then decrease, while the values of T 0
1 decrease when 0 < k*c < 0.06 and thereafter

increases.
(v) Effect of angle between propagation and attenuation vectors. To study the effect of angle between

propagation and attenuation vectors c on reflection and transmission coefficients for both plane and
corrugated interfaces, we fix the values of ac = 0.10, b1c = 0.15, b2c = 0.12. We notice from Figs.
16–19 that the pattern of variations of coefficients R1, T1, R

0
1; T

0
1 versus c is similar. However, all coef-

ficients have their maximum values near c = 72�. We also noticed from these figures that with the
increase of angle of incidence, each amplitude ratio decreases with the increase of c.
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7. Conclusions and remarks

Mathematical analysis is made using Rayleigh�s method of approximation to the problem of reflec-
tion and refraction coefficients of shear waves incident obliquely at a corrugated interface between two lat-
erally and vertically heterogeneous viscoelastic solid half spaces. Formulae of the reflection and
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transmission coefficients for first approximation of the corrugation are presented in closed form. We con-
clude that

1. The analytical expressions of reflection and transmission coefficients for the first order approximation of
the corrugation are proportional to the amplitude of the corrugated interface. These coefficients are also
the functions of angle of incidence, heterogeneity parameters and the angle between propagation and
attenuation vectors of the incident wave.

2. The variations of different coefficients are found to be different with increasing values of corruga-
tion parameter. If we remove the corrugation of the interface, then it is easy to see that all the
coefficients corresponding to the first order approximation of the corrugation vanish and we are
left with only reflection and refraction coefficients at the plane interface as was expected before-
hand.

3. The lateral and vertical heterogeneities play an important role in changing the behaviour of reflection
and transmission coefficients for the first order approximation of the corrugation. These coefficients
increase with increase of lateral heterogeneity. The effect of lateral heterogeneity is found to be more
dominant near normal incidence and is less dominant near the grazing incidence. In the case, when both
the media are free from lateral heterogeneity and vertical heterogeneity increases, the values of reflection
and transmission coefficients also found to increase.

4. A remarkable effect of lateral and vertical heterogeneity on these coefficients at a corrugated interface is
found in case of viscoelastic media and that of elastic media. Reflection and transmission coefficients for
the first order approximation of the corrugation are found to be significantly effected by the angle
between propagation and attenuation vectors c. Each coefficient decreases with increase of angle of
incidence.

5. The results of the problems earlier discussed by Asano (1960), Singh et al. (1978), Kaushik and Chopra
(1980, 1984) and Gupta (1987) have been obtained as particular cases of the present problem. Some new
results have also been presented.
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