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Abstract

Reflection and transmission coefficients due to incident plane SH-waves at a corrugated interface between two iso-
tropic, laterally and vertically heterogeneous visco-elastic solid half spaces are obtained. The density and complex rigid-
ity of each medium are considered to vary along horizontal and vertical directions. Closed form expressions of reflection
and transmission coefficients are derived using Rayleigh’s method of approximation. These coefficients are found to be
the function of corrugation, heterogeneity, angle of incidence, angle between propagation and attenuation vectors and
visco-elasticity of the media. Numerical computations are made for a specific model to study the nature of dependence
of these coeflicients. Variations of reflection and transmission coefficients for the first order of approximation of the
corrugation versus angle of incidence, corrugation and angle between propagation and attenuation vectors are com-
puted and depicted graphically. Comparison is made between these coefficients in viscoelastic media and in uniform
elastic media. The problems investigated earlier by Asano [Bull. Earthq. Res. Inst. 38 (1960) 177], Singh et al. [Acta
Geophys. Pol. XXVI (1978) 209], Kaushik and Chopra [Geophys. Res. Bull. 18 (1980) 111] and Gupta [Geophys.
Trans. 33 (1987) 89] have been reduced as particular cases.
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1. Introduction

Mathematical treatment of propagation of seismic waves and their reflection and refraction from
various types of surfaces are widely applied in the problems of seismology and seismic explorations.
Reflection seismology is a tool for investigating the internal structure of the earth as well as for
exploration of valuable materials buried under the earth surface. Many recent studies based on
the body and surface wave analysis have led to the conclusion that there are significant lateral
and vertical variations in the elastic properties of the earth medium. Also, there are several types
of discontinuties present in the earth. These discontinuties within the earth may be irregular in nat-
ure and cannot be considered as perfectly plane interface. It is, therefore, necessary to take into ac-
count the roughness or irregularity of the interface, while studying the problems of reflection and
refraction of seismic waves. These reflected and refracted waves carry a lot of information with them
which are helpful in studying the character of the material present in the earth among several other
important informations. Therefore, the study of reflection and transmission of elastic/seismic waves at
the corrugated interface is of great practical importance in theoretical as well as in observational
seismology.

The problems of wave propagation and their reflection and refraction from plane boundaries have
been studied by several researchers in the past and have appeared in the open literature e.g. see Ewing
et al. (1957), Brekhovskikh (1960), Achenbach (1976), Aki and Richards (1980), Ben-Menahem and
Singh (1981), Sheriff and Geldart (1982), Lay and Wallace (1995) and Udias (1999). Knowledge of
reflection and transmission coefficients of SH-waves in a layered visco-elastic homogeneous and inho-
mogeneous medium is essential for calculations of amplitudes of various seismic signals. The general
theory of visco-elasticity describes the linear behaviour of both elastic and anelastic materials and pro-
vides the basis for describing the attenuation of seismic waves due to anelasticity. Cooper and Reiss
(1966), Cooper (1967), Buchen (1971a,b) and Borcherdt (1973a,b, 1977), Borcherdt and Wenneberg
(1985), Borcherdt et al. (1986), Borcherdt (1989) and Romeo (2003) investigated various problems
of wave propagation in visco-clasticity. Kaushik and Chopra (1980, 1981, 1983, 1984) studied the
problems of reflection and transmission of SH-waves at a plane interface by incorporating different
nature of elastic properties in linear visco-elastic half spaces and discussed their effects on amplitude
ratios of reflected and refracted waves. They have also discussed the existence of critical angle of
the incident wave for some cases. Gogna and Chander (1985) discussed reflection and transmission
of SH-waves at a plane interface between anisotropic inhomogeneous elastic and visco-elastic half-
spaces.

In all the above investigations, reflection and transmission of SH-waves were considered at a plane
interface. Asano (1960, 1961, 1966), Gupta (1987), Tomar et al. (2002), Kumar et al. (2003) and Tomar
and Kaur (2003) attempted problems of reflection and refraction of elastic waves at a corrugated inter-
face between two different elastic solid half spaces using Rayleigh’s method by incorporating the effects
of elastic and anelastic material properties. Abubakar (1962a,b,c) used method of small perturbations
to investigate the problems of reflection and refraction of elastic waves at rough boundaries. In the
present problem, using Rayleigh’s method of approximation, we have attempted a problem of reflec-
tion and transmission of SH-waves at a corrugated interface between two horizontally and vertically
heterogeneous visco-elastic solid half spaces. The approach is based on a linear model of visco-elastic-
ity and on a Fourier expansion of the function which describes the interface’s shape. An exponential
law is considered to account for material inhomogeneity. The continuity conditions for displacement
and traction at the interface are exploited to obtain the zeroth and the first order approximations
to obtain the reflection and transmission coefficients. Results of Kaushik and Chopra (1980, 1984),
Gupta (1987), Singh et al. (1978) and Asano (1960) have been obtained as particular cases of the pres-
ent problem.
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2. Formulation and theory

We consider a corrugated interface separating the two horizontally and vertically inhomogeneous visco-
elastic solid half spaces with different elastic properties. Let x—y plane be horizontal and z-axis be pointing
vertically downwards. The geometry of the problem is shown in Fig. 1. The quantities concerning the lower
half-space H; and in the upper half-space H, will be denoted by subscript 1 and 2 respectively. We denote
the complex rigidity, density and shear velocity in media H,, (m =1, 2) by M,,, p,, and B, (= /M,./p,,)
respectively. Let the equation of the corrugated interface be given by

z={(), (1)

where ( is a periodic function of x, independent of y and whose mean value is zero. Fourier series repre-
sentation of { is given by

C = Z I:grlelnk*x + C*neilnk*x} ) (2)
n=1

where {,, and {_,, are Fourier expansion coefficients, k" is the wave number, 7 is the series expansion order
and 1 = v—1. Introducing the constants ¢, ¢, and s, as follows:

¢ Cn F 18,
Clzgflziv C:tn:

S =234, (3)

we obtain

{=ccosk’x+ Z[c,, cosnk™x + s, sin nkx].
n=2

If the interface shape is expressible by only one cosine term, that is, { = ¢ cos k"x, where c¢ is the amplitude of

*

the corrugation and the wavelength of the corrugation is then given by 2n/k™.

Ha: [M2, o

v
x

Hi: [My, P4] v

Fig. 1. Geometry of the problem.
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The time harmonic equations of small motion for SH-wave [i.e. for U & exp(iw?)] in an isotropic and
inhomogeneous visco-elastic media H,,, in the absence of body forces, are given by

%(Mm%>+%(Mmag>+p U, =0, 4)
where w is the angular frequency and U,, is a complex displacement vector given by

U, =(0,U,,,0).
Since the media are assumed to be laterally and vertically heterogeneous, we take

M, p}(x,2) = {Mino, po} €XP(anX + buz), (5)

where p,.0, &, b, are real constants and M,,, are complex constants. Using relation (5) into Eq. (4), the
general solution of resulting equation may be written as

Z i [€XP(— A,y - 1) exp{i(wt — P, -1)}]7 (m=1,2), (6)

where r is the position vector, y is the unit base vector and D,,; are complex constants. A,,; and P,,; are
the attenuation and propagation vectors respectively defined by (Borcherdt, 1977; Kaushik and Chopra,
1984)

am A bm /- A
Amj = |:7—km]:|x+ |:2+ (—1)]+1dﬁm[:|z, (7)
P,; = ki + (—1)d; 2, (8)

where X and Z are unit base vectors, &, (= k,,z + 1k,,;) 1s the complex horizontal wave number given by
(Kaushik and Chopra, 1984)

km = |ij| sin Omj - 1|Amj| Sin(omj - ymj)a (9)
the suffixes R and [ refer to the real and imaginary parts respectively and
2 2
2 g2 2 D bm 2 2/02 _ MmO
dy, =ky, — k== Ky, =B Bu= o (10)

0, are defined in Fig. 1 and y,,; are the angles between the propagation and attenuation vectors P,,; and
A,,;. Using (7) and (8), we see that the attenuation and propagation vectors satisfy the followmg two
relations:

|ij‘2 - |Amj|2 = Re(kém) - amAmjx - bmAmjza (11)
2|ij‘ |Amj| Cos ij = _Im(k%;m) + aumjx + memjz; (12)

where 4,,;c, Ayjz, Py and P,,;. are the components of attenuation and propagation vectors in the direc-
tions shown by their suffixes x and z; Re stands for real part and Im stands for imaginary part. On solving
Egs. (11) and (12), one can obtain

2|ij‘ - Q'Vll + \/ Q ml +Qn127 (13)
2|Am]| = _le + V le + QmZ’ (14)
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where
Qi = Re(k2 ) = anAup — buAu, (15)
sz = [—Im(k?im) + aumjx + memjz]/COS ij' (16)

Let a train of general plane SH-wave propagating through the lower half space H; become incident at the
corrugated interface z = { and making an angle 0;; with the z-axis. Due to corrugation of the interface, the
reflection and refraction phenomena will be effected and the incident SH-wave will give rise to the following
waves at the corrugated interface:

In medium H, (i) a regularly reflected wave making an angle 6, with z-axis, (ii) a spectrum of nth order
of irregularly reflected waves at angles 0}, in the left side of regularly reflected wave and (iii) a similar spec-
trum of irregularly reflected waves at angles 0/, in the right side of regularly reflected wave.

In medium H, (i) a regularly refracted wave at an angle 6,; with z-axis, (ii) a spectrum of nth order of
irregularly refracted waves at angles 0, in the left side of regularly refracted wave and (iii) a similar spec-
trum of irregularly refracted waves at angles 65, in the right side of regularly refracted wave.

Thus, the total displacement field in medium H; will be the sum of incident, regularly reflected and irreg-
ularly reflected waves, given as

2 00
uiy = »_ Dyyexp{—Ay;-r}exp{i(wt — Py -1)} + > _ B exp{—A}, -r}exp{i(wi — P}, 1)}
j= n=1

Jj=1
+ ZB; exp{—A, -r}exp{i(wt — P}, -1)}. (17)
n=1

Similarly, the total displacement field in medium H, will be given by

[o¢]

Uy = Dy exp{—Ay; -r}exp{i(wt — Py -1)} + Z C,exp{—A3, -r}exp{i(wt —P5 -1)}

n=1
+>Cexp{—A}, -r}exp{i(wt — Py 1)}, (18)
n=1

where D;;, D, and D,; are in general frequency dependent complex amplitudes of the incident, reflected
and transmitted waves respectively; B, and B, are the amplitudes of irregularly reflected (scattered) waves;
C, and C/ are the amplitudes of irregularly refracted waves and

m n | x bm j n S n n oz g s

Ay =[5kl {7 * <—1>’“dﬁm1]27 P, = kot + (-1)/dj 2 (19)
m ~ bm j ~ A i in A

wy= [ ke [l e e =k v 2

k! and k]! are the complex horizontal wave numbers for the waves of nth order spectrum in H,, and are
given by

k, =[P, |sin0 —i|A] |sin(0,, —7y,,) (m#]), (21)
k:: = |P/n’/11j‘ sin O:Z,‘ - 1|A:Zj‘ Sin(o,y:z,‘ - V:Z_,‘) (m # ])7 (22)
and
n 1 ug n 1
(d5,)" =k, = (k)" = (@ +0,), (@) =k = (k)" =7 (a5, +0},). (23)
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3. Boundary conditions

The boundary conditions to be satisfied at the corrugated interface are the continuity of displacement
and traction, that is, at z =

Upp = U, (24)
61412 6u12 a1'{22 auZZ
|2 - Ge | = a2 -T2, >

where (' is the derivative of { with respect to x. Inserting the values of u;, and u,, given by Eqgs. (17) and
(18) into the above boundary conditions, we have

D“exp{—(%—i— zkl)x— (%— zd,;1>C} +Dlzexp{—<%+ zkl)x— <%+ zd,;1>C}
+ZB”exp{ ( +zk") (b +zd/,l> }—i—ZB’exp{ ( —|—zk/”> ([)2+d,,l>é}
:Dzlexp{—(22+lk2>x—<b2 zdﬁz) } Zc exp{ ( n k") <b22—1d’/§2>C}
+Zc’ exp{ ( + k) ) —(%—zd}?z)é}, (26)

= My l( 52 ldﬂ2>D21 exp{ (22 + lkz)x - (%— 16%)(} - icn (% - ld;;z) exp
@ (o)) - S (Yoo (% w)o— (- o)

(% + thy ) D3y exp {—(% iy ) - (% B ld“)g} " f: o

y {_(%+ 3 ) — (%— zd';z)z} + ic; (5 +wy) exp {—(%+ ey )x (%— ’d?z)C}H-

+{
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Of course, Egs. (26) and (27) imply the Snell’s law, which is not affected by the inhomogeneity of the med-
ium and, according to Borcherdt (1977) and the representation (9) can be written as

k= |P|sin0 — 1|A|sin(0 —y) = k; =k, (28)

where |P| and |A| are the values of |Pj;| and |A}| given by (13) and (14) with a; = b; = 0 respectively.

Eq. (28) and the fact that the amplitudes Dy, Dy, D1y, B,, B,, C, and C,, are independent of the spatial
coordinates imply a; = a, = a (say). In addition, owing to Eq. (2), we obtain the extended form of con-
cerned Spectrum theorem (Asano, 1960) which gives

K—k=nk', K'—k=-nk (i=12) (29)

Using Egs. (21), (22) and (28), it can be verified that when visco-elasticity is absent, the Spectrum theorem
given by (29) reduces to that given in Asano (1960). Now using Egs. (28) and (29) into Egs. (26) and (27),
we obtain

D“exp{—(%— ld/ﬁ,)C} +D126Xp{—(%+ ldﬁ]>€} +§:Bnexp{—%<:_ l(nk*x—‘rd;;lg)}
n=1

- b
+ZB;exp{—?1C+ l(nk*x—d;g’lC)}
n=1

= Daexp {_(%— ’d/fz)C} + iC,,exp {—%C— 1(nk*x — d;zg)}
n=1

+ZC;exp{—72C+l(nk*x—kd,;;C)}, (30)
n=1

Mm{(—bz]—i-ldﬁl)DueXp{—(bzl—ld/h)} ( —|—zd/;1>Dlzexp{ < ‘Hdm)é}
_ZBn( +1d )exp{—lnk*x—<b— ﬁ[) } i ( )
n=1
xexp{mk*x—(% d}?})(}-ﬁ-({ D11€XP{ ( ldm) }+ 5 Dn
xexp{ <b +1d > }+ZB L k) exp{—mkx—<ﬁ ) }
B 2
- a b
+Y B (=—wnk’ exp{z k" —<+ld’"1)C}H
; (2 " ) T\
) b . bZ
(——+zdﬁz>Dzlexp{ <__1d52>§}—2(:,,<2 d’;,z)exp{—mkx—<3—ld22>5}
n=1
- n * b2 n 1|42 b2
_ZIC ( —1d )exp{mk x—(i—tdﬁz)l}—kl {3D21exp{—<3—zdﬁz>é}

+ZC"( T nk” exp{—mk*x—<——’d22)c}+§;C/”(%_lnk*>e)(p{mk*x_(%_ld%)g}ﬂ.

and

=M>

ST

n=1
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Egs. (30) and (31) enable us to determine the reflection and transmission coefficients of any order of
approximation of the corrugated interface.

4. Solution of the first order approximation

We assume that the corrugation of the interface z = {(x) is so small that higher powers of { can be ne-
glected, so we have
e =1-10C. (32)
Now, collecting the terms independent of x and { to both side of Egs. (30) and (31), we obtain

Dy + Dy = Dy, (33)
b b b
M10|:<El— ld/;]>D11 + (71+1d/;I>D12:| _MZO(Ez_ ld/;z)Dzl‘ (34)
Using the notations R = fﬁ and 7 = g—f:, the solution of Egs. (33) and (34) is given by

1 Mo Mo
oy — by 210 Moy, —a
. 2(2 1,‘,20>+l(,‘(20 By Ba

— , (35)
1 M My
—| b by —— —d d
5 ( ) + ]M20> + Z(Mzo st ﬁz)
2: M g
T= My M1 . (36)

1 M My
z <—b2 + b] M—ZO) + I<M—20dﬁl + dﬁz>

These are the reflection and refraction coefficients for the plane interface between two laterally and verti-
cally heterogeneous viscoelastic solids already obtained by Kaushik and Chopra (1984) for the relevant
problem. Further, to find the values for the solution of first order approximation for B, and C,, we collect
the coefficients of e "¢~ to both sides of Egs. (30) and (31), obtaining

b b
R~ T, = [0+ R o= Ry + 7(=5 )| (37)
b1 n Mz() bz n b1 2 nk*a
(s )r =32 (5 )7 - K‘z“d"') T U
bl 2 M20 b2 2 Lnk*a
+(2+1dﬁ1> R—mT _E—’_ldﬁz T Cons (38)
where R, = Z- and 7, = &=

D Dy
Similarly, on equating the coefficients of €”*'* to both sides of Egs. (30) and (31), we obtain the first order

approximation for B, and C/ as follows:

b b
R; — T; = |:(1 +R)El— l(l —R)dﬁl + T<—?2+ ldﬁz):|c,,, (39)
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bl n / M20 b2 n !
(7+1dﬁl>Rn—M—lO 3—161/32 Tn

*

b, 2 nk'a b, 2 Moy b, , nk*a
— [(—2+ld/;l) +T(1+R)+ <2+1dﬁ]> R—mT (—3+ld/;2) +T é/nv

’ B, 7 C
where R, = 5= and T, = 5=
Eqgs. (37)—(40) give the values of R,, T,,, R and T', as follows:
Ag Ar Ay Ap
Rni_na Tn: ”7 R, = ”7 T,:—na
A, A, A A
where

My (b b b b
s i () [(5- ) o) oo
Mg b, 2 nk'a b, 2 nk'a by 2 mk'a
+M—10T[(7_ ldﬁz) 2| \2 dp, JrT_R E—Hdﬁ’ 2 S
2 nk'a b, 2 nk'a Moy b, 2 nk'a
_ld/;l> + B +R —<?+ld[;l) + B +]w—mT[<—?+ldﬁ2> — 3 ‘|

b b b
+<31+ zd;1> [(1 +R)31 — (I =R)udp, — T(jz - ldﬁ:)” -

A —

&

|

[
RN
(SIRSy

My (b, . b b b,
ARL = |:—10 (3 — ld;;2> [(E — ldm) +R<?+ ld/;l) + T(—?‘F ldlgz>:|
M b, 2 nk'a b, 2 nk'a b ' mkla
+?T>< [<?—ldﬁ2> +T — 3—1(1[;1 — ) +R ?"‘ld/;l — 3 Cm
b, 2 nk'a b, 2 mk'a Mo b, 2 mkta
ATL: —(2 ldﬁl) > —R (2+1dﬁ1 + B +?T —5+1dﬁ2 +T

b b ’
+<31+ 1d l) [(1 +R)31— (1 — R)udy, +T<_?2+ ldﬁZ)HCm

by bM M
An|:l+ 2 201<d731+20dn>:|,

2 2My My, P

/ bi  baMy m M
A= |2 a2 )|
n [ 2 + 2M 1o l( B +M10 ﬁz>:|

3629

(40)

(42)

(47)

The values of the coefficients R and T appearing in the above expressions are given by Eqgs. (35) and (36).
Here R, and R), are reflection coefficients for the first order approximation of the corrugation; 7,, and 7", are

refraction coefficients for the first order approximation.

In a special case, if we consider {, ={_, =0; (n # 1) and {; = {_; = § then the boundary surface is given
by z = ccos k*x, where ¢ is the amplitude of the corrugation. From Egs. (42)—(47) we obtain the following

formulae of Ry, T, R, and T for the first order approximation of the corrugation as
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AR AT AR’ AT’
R=—" T =—, R =— T = 48
1 A] ) 1 A] ) 1 A/1 9 1 A/l ) ( )
where ARI,AT”AR/, AT/ ,A; and A] are given as
c My (b by b| b,
ARI 2 |:M1() (2 d}fz) |:<2 ldﬁ] 2 + ldﬁ] +T _3—’_ ld/)'z
Mo b, 2 ka bl 2 ik b, 2 ka
+]M—10T [<?—ld/g7> —T — 2 ld/j] +T+R — 3+ld/;l +T ; (49)

c b, 2 ka b, 2 ka Mg b2 2 ka
Aﬂ:in ’dﬁl> TR (2“‘1/‘1) | T [\ 2 ) T3

) - ()
A = 3 [ZTZ (1)2 dﬁz) szl ldﬁ,) (1)2' + ldﬁ,) - T(%— tdyzﬂ

Moy b, 2 ka b, 2 ka by ' ka
+M_mTX[(?_’d"2> +T]_<2 ”’/ﬂ) 3 PRI ) |

c b, 2 ka b, 2 ka Moy b, 2 ik
Arazil—<3—1dﬂl> _T_R <2+ldﬂl> +T +M10T E_Idﬁz +T

b, b b
+(2 + d,;l) [(1 +R) 5 — (1 = Ryidy, — T(g— d’)” (52)
1 (M 1 1
A= (22
: Z(Mlob2 b) (d +M10dﬁz

;1 My n o M o,
A .
] 2 <M10 b, —b ) (d + d

The values of dg , d/, and d’ can be obtained from Egs. (10) and (23) by takingn =1 and a; = a, = a. We
notice from the above equatlons that the coefficients for first order of approximation are proportional to
amplitude of the corrugated interface and are functions of physical properties of the media and of the inci-
dent wave.

—~

51)

5. Particular cases

(a) When only lateral heterogeneity of both the media is removed, we are left with vertically heterogeneous
viscoelastic media. In this case, we shall have a; = a, = a = 0. Plugging these values into Egs. (10) and
(23), we get

b b , b

m n 2 n 2 m n 2 n m
d?fm = k?zm - krzn T3 (d/;m> = k?;m - (km) T3 (d;;m) = k%im - (k;n) 3
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With these modified values, the reflection and transmission coefficients due to incident SH-waves at a cor-

rugated interface between two different vertically heterogeneous viscoelastic solids can be obtained from

Egs. (35), (36) and (41).

(b) When only vertical heterogeneity of both the media is removed, we shall have laterally heterogeneous
viscoelastic media. In this case, we shall have b; = b, = 0, so that the expressions in Egs. (10) and (23)

reduce to
2 2 2 3’ n )2 2 ny\2 afﬂ mn \2 2 2 ai
dﬂ”’ - k - k 4 ’ (dﬂm) = kﬁm - (km) - Z? (dﬁm) = k[))m - (km) - Z .

With these values, the reflection and transmission coefficients, in this case, can be obtained from Egs. (35),

(36) and (41).

(c) When only viscosity of the media is removed, we are left with isotropic and heterogeneous elastic
media. Replacing 7, 7, and T by \/MIO/MQO Ty, \/MIO/MZOT and MlO/MZOT’ respectively;

2
dy =ky — ki — 2 _d=y N kffz - B2 s easy to see that a2 and b reduce to 4a?

4
and 4bi in the notatlons of Gupta (1987). W1th these values and b,,, = y,,, Egs. (35)—(40) match with
Eqgs. (28), (29) and (32)—(35) of Gupta (1987) for the corresponding problem.

(d) When viscosity, lateral and vertical heterogeneities of the media are removed, then the medium H; and

H, becomes uniform elastic. In this case, putting a,, = b,, = 0 into the expressions of Eq. (10), we have

dg, = % and dy, = %, where B, = \/Mio/p1g, B, = /M /py- With the help of these reduc-
tions and using appropriate notations, the reflection and transmission coefficients for the plane inter-
face given by Egs. (35) and (36) and the boundary conditions (42)—(47) yielding reflection and
transmission coefficients for the first order approximation, match with those of Asano (1960) for the
relevant case.

(e) When corrugation, viscosity, lateral and vertical heterogeneities of the media are removed, the problem
reduces to the problem of SH-wave incident at plane interface between two homogeneous elastic half
spaces. All the reflection and transmission coefficients R, T, R} and T for the first order approxima-
tion of the corrugation, in this case, vanish as they are proportional to the amplitude of corrugation c.
Therefore, in this case each of ¢, a, b; and b, vanishes. Thus from Eq. (48), we see that the coefficients
Ry, Ty, R} and T} become zero and the expressions of R and T given by (35) and (36) reduce to those
given in Savarensky (1975) for the relevant problem, after replacing Mo/ My by m and f, /B, by n.

(f) When corrugation and viscosity in the media are removed, we are left with the reflection and transmis-
sion of SH-waves at the plane boundary between two laterally and vertically heterogeneous solids. In
this case, { = 0,M o/ M>y = m, a; = a» = o, b = 71, and b, = y, and the expressions in Eq. (10) take the
form al2 = k2 cos20,, “;‘" — };i" = s2. With these modifications, it can be seen that the reflection and
transmlssmn coefﬁments given by Egs. (35) and (36) at the plane interface are in full agreement with
those given in Singh et al. (1978) for the relevant problem.

(g) When lateral and vertical heterogeneities from both the media and visco-elasticity from the upper med-
ium is removed, the problem reduces to the problem of reflection and transmission of SH-waves at a
corrugated interface between elastic and homogeneous viscoelastic solid half spaces. In this case,
a=b,=>b,=0and ky = dj, =0. From Eq. (7) 4,,;= 0, which means 7,,; = 0. Thus the expressions
in Eq. (10) reduce to al2 = k2 k2 The reduced formulae of reflection and transmission coefficients
from Egs. (39), (36) and (41) at plane and corrugated interface become

_ Mlodﬂl — Mz()d[gz T 2M10dﬂ1
Modg, + Mxdy,’ Myodg, + Mxdy,’

1c

Ry = 1 1
2(M10a’ﬁ1 + Mzodﬁz)

M{(1 = R)dy dy, + Tdy,(dy, —d )} — Mio(1 + R)d}

/jl:|7
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—Ic

T, = I 1
2(M10dﬁ1 +M20dﬁz)

_M](){(l +R)dél + (1 —R)dﬁldllgl} — T(Mz()dzz +M1odéldﬁz)],

1c [
R/l = Z(Mlodll +M20d/l) MZO{(I - R)d/ﬁlzd/fl - Td/fz(dﬁz + d;;lz)} +M10(1 +R)d/2?1:|7
By B/

, —ic

2 /1 2 /1

) = Sty sy (M1 + RO + (1= Ry}~ T, + M )]

(h) When lateral and vertical heterogeneity in the upper medium is removed and only lateral heterogeneity
in the lower medium is removed then we shall be left with the problem of reflection and refraction of
SH waves at a corrugated interface between homogeneous and vertically inhomogeneous viscoelastic
half-spaces. In this case, the corresponding formulae for reflection and transmission coefficients at
the corrugated interface can be obtained easily by putting ¢ = b = 0. It is easy to verify that if corru-

gation is removed in addition to the above then the formulae (36) and (37) match with the formulae
(35) and (36) obtained by Kaushik and Chopra (1980) for the relevant problem.

6. Numerical results and discussion

In order to study the effect of inhomogeneities (lateral and vertical), corrugation and the angle between
attenuation and propagation vectors numerically on reflection and transmission coefficients, when a plane
SH-wave become incident obliquely at a corrugated interface between two viscoelastic half spaces H; and
H,, we have computed the modulus values of these coefficients for a specific model. We take the following
values of relevant elastic parameters as given in Silva (1976) and Krebes and Hron (1980a,b):

Mo /Mg = 2.64, Mo /Mior =450, p, =22 g/em’

Moo /Mg =300, Big/Boe =146, p, =33 g/cm’
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Fig. 2. Variation of R; with 6 when byc =0 = b,c and ac = 0.0, 0.2, 0.4, 0.6.
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Fig. 3. Variation of T with 0 when b;c = 0 = b,c and ac = 0.0, 0.2, 0.4, 0.6.
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Fig. 4. Variation of R} with 6 when bjc =0 = b,c and a ¢ =0.0,0.2, 0.4, 0.6.

wc/By, = 0.5, 711 =20°, 01, =45° and k*¢=0.00125, wherever not mentioned. Hereafter, we shall use 0 and
y instead of 07, and y;; respectively. The non-dimensional quantities b;c and b,c represent the vertical het-
erogeneity factors in H; and H» respectively, while ac is lateral heterogeneity factor in both the media. For
the elastic model, we shall take the values of parameters, Mq; = M>o;=0.
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Fig. 6. Variations of R; with 6 when ac =0.0,b;c = 0.0, 0.10, 0.15 and b,c = 0.0, 0.10, 0.20.

(1) Effect of the lateral heterogeneity. Figs. 2-5 depict the variations of reflection and transmission
coefficients for the first-order approximation of the corrugated interface with respect to the angle
of incidence, when vertical heterogeneities of the media are absent and lateral heterogeneity factor
vary. The effect of ac on these coefficients is clearly noticed. It is found that the values of coeffi-
cients Ry, R} and T increases with increase of ac and 0 whereas the coefficient 7; is found to
decrease with increase of angles of incidence. The magnitude of 77 is found to be greater than those
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Fig. 7. Variations of T with 6 when ac = 0.0,b,¢ = 0.0, 0.10, 0.15 and b,c = 0.0, 0.10, 0.20.
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Fig. 8. Variations of R| with 0 when ac = 0.0, ;¢ = 0.0, 0.10, 0.15 and b,c = 0.0, 0.10, 0.20.

of other amplitude ratios for the first order approximation of the corrugation. Also, the rate of
increase or decrease of coefficients with 0 is found to more significant in the absence of heteroge-
neities.

Effect of the vertical heterogeneity. Figs. 6-9 show the effect of vertical heterogeneity on Ry, T}, R} and
T} and lateral heterogeneity factor is absent in both the media. We notice from these figures that the
values of these coefficients vary significantly with increase of b;c and b,c. The values of coefficients R
and T increase with b;c whereas values of coefficients R| and T show different behaviour. The values
of coefficient R| decreases very slowly when angle of incidence 0 lies between 0° and 20° and thereafter
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Fig. 9. Variations of T} with 0 when ac = 0.0, b;c = 0.0, 0.10, 0.15 and b,c = 0.0, 0.10, 0.20.
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Fig. 10. Variations of R; with 6 when ac = 0.0, b;c = 0.15 and b,c =0.12.

increases. From Fig. 9, it is found that the values of coefficient T decreases with b,c at all angles of
incidence. When only vertical heterogeneity in the medium H, is increased, the values of coefficients
Ry, Ty, R} and T increase at all angles of incidence. When vertical heterogeneity in both the media
increases, the values of all the amplitude ratios increase at all angles of incidence. Also, in general
the reflection coeflicients increase with increase of 0, while transmission coefficients decrease with
increase of 0 in this case.
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Fig. 11. Variations of T with 8 when ac = 0.0, b;c = 0.15 and byc = 0.12.

0.16
ac = 0.10, blc = 0.15, b2c = 0.12

0.12— //—N
a i visco-elastic
L
0
o
-%0.08—_,_<__\ .
D: I ~ ’
[3) - < /
° - ~
3 S 1
g 004 T K
< elastic ~

0'00 TTTT I TTTT I TTTT I TTTT I TTTT I TTTT I TTTT I TTTT I TTTT

0 10 20 30 40 50 60 70 80 20
Angle of incidence

Fig. 12. Variations of R| with 6 when ac = 0.0, byc = 0.15 and byc =0.12.

(iii) Effect of visco-elasticity. Figs. 10-13 show the effect of visco-elasticity on various amplitude ratios
when both lateral and vertical heterogeneities are present in both the media with the values
ac=0.10, bjc =0.15 and b,c = 0.12. We notice from these figures that the values of coefficients R;
and R/ in viscoelastic media are larger than those in case of elastic media. The values of amplitude ratio
T, for elastic case are less than that of viscoelastic case in the range 0° < 0 < 82°, while in the rest of the
range it is reverse. The values of T for elastic case is found to be greater than that of viscoelastic case
for all angles of incidence except in the neighborhood of angle 6 = 80°. Again, in viscoelastic media the
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amplitude ratio R; increases slowly, while all other amplitude ratios decrease with angle of incidence.
On the other hand, in case of elastic media, the behaviour of coefficients Ry, R} and T’ is similar to each
other, while the behaviour of coefficient 77 is that it first increases very slowly and decreases fast in the
neighborhood of 6 = 80° and thereafter it increases to the maximum value at 8 = 90°.

Effect of corrugation. To study the effect of corrugation parameter k"¢ on the coefficients Ry, T}, R| and
T, we have computed them for very small values of k"¢ with the values of parameters ac = 0.10,
ble =0.15, boe = 0.12 and 0 = 45°. Figs. 14,15 show the variations of the coefficients Ry, T, R}, T} ver-
sus k"c. Here we notice that the coefficients 7', T} and R] are strongly affected by the corrugation
parameter k"¢, while the values of R, are least affected with increase of k*c. Also, the values of T}
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Fig. 16. Variations of R; with y, when 0 = 30°, 45°, 60°.

decrease linearly with k*c. We observe from these figures that the values of R| increase when
0 < k"¢ <0.06 and then decrease, while the values of 7"} decrease when 0 < k"¢ <0.06 and thereafter
increases.

(v) Effect of angle between propagation and attenuation vectors. To study the effect of angle between
propagation and attenuation vectors y on reflection and transmission coefficients for both plane and
corrugated interfaces, we fix the values of ac =0.10, byc =0.15, b,c =0.12. We notice from Figs.
16-19 that the pattern of variations of coefficients Ry, T}, R|, T} versus y is similar. However, all coef-
ficients have their maximum values near y = 72°. We also noticed from these figures that with the
increase of angle of incidence, each amplitude ratio decreases with the increase of 7.
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7. Conclusions and remarks

90

Mathematical analysis is made using Rayleigh’s method of approximation to the problem of reflec-
tion and refraction coefficients of shear waves incident obliquely at a corrugated interface between two lat-
erally and vertically heterogeneous viscoelastic solid half spaces. Formulae of the reflection and
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Fig. 19. Variations of T} with y, when 6 = 30°, 45°, 60°.

transmission coefficients for first approximation of the corrugation are presented in closed form. We con-
clude that

1. The analytical expressions of reflection and transmission coefficients for the first order approximation of
the corrugation are proportional to the amplitude of the corrugated interface. These coefficients are also
the functions of angle of incidence, heterogeneity parameters and the angle between propagation and
attenuation vectors of the incident wave.

2. The variations of different coefficients are found to be different with increasing values of corruga-
tion parameter. If we remove the corrugation of the interface, then it is easy to see that all the
coefficients corresponding to the first order approximation of the corrugation vanish and we are
left with only reflection and refraction coefficients at the plane interface as was expected before-
hand.

3. The lateral and vertical heterogeneities play an important role in changing the behaviour of reflection
and transmission coefficients for the first order approximation of the corrugation. These coefficients
increase with increase of lateral heterogeneity. The effect of lateral heterogeneity is found to be more
dominant near normal incidence and is less dominant near the grazing incidence. In the case, when both
the media are free from lateral heterogeneity and vertical heterogeneity increases, the values of reflection
and transmission coefficients also found to increase.

4. A remarkable effect of lateral and vertical heterogeneity on these coefficients at a corrugated interface is
found in case of viscoelastic media and that of elastic media. Reflection and transmission coefficients for
the first order approximation of the corrugation are found to be significantly effected by the angle
between propagation and attenuation vectors y. Each coefficient decreases with increase of angle of
incidence.

5. The results of the problems earlier discussed by Asano (1960), Singh et al. (1978), Kaushik and Chopra
(1980, 1984) and Gupta (1987) have been obtained as particular cases of the present problem. Some new
results have also been presented.
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